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ABSTRACT 
During the study of longitudinal data or repeated measures, 
we are often concerned with the choice of a good 
mathematical or statistical model to approach reality. In 
this paper, we present different models. Our goal is the 
choice of the suitable ones. 
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1. INTRODUCTION 
Generally there is no problem to study simple statistical data 
because there is a wide variety of statistical models; especially 
linear regression models (Andrew and Jeniffer 2006; Bonneu; 
Chouquet 2010). However, when the data are longitudinal; 
repeated; grouped or when there are missing or censored data 
(Droesbeke et al.1989) in the statistical analysis, the problem 
which arises is the correlation between these data. This situation is 
common in medicine; biology; etc… generally in the life sciences. 
In this situation it is difficult to choose the right model. Among 
the suitable models, we can take the linear mixed model. The 
longitudinal studies aims at observing any individual on two 
occasions or more over wide periods, by taking account of time; 
on the other hand, repeated measurements are taken during one 
period of study which is very short, by taking account of the 
experimental conditions (Ware 1985). The book of Diggle et al. 
2002 is a complete work treating the longitudinal data analysis. 
For longitudinal data; the analyses are often concerned with the 
investigation of changes over time of a characteristic which is 
repeatedly measured for each study subject or experimental unit. 
When the data are unbalanced; that is all the individuals are not 
observed at equally space time points and the observation 
numbers are not equal for the individuals. In this situation, 
methods based on the standard multivariate linear model are not 
available. For repeated measurements, we can use the time series; 
though in practice, the calculative problems repeated on these 
time series which are generally short and numerous make these 
methods inapplicable, in rending the passage to other methods. 
We can, for example, use the mixed linear models which consist 
of using all these series at the same time; the method of least 
squares; the bootstrap; the generalized linear models which often 
use quasi-likelihood; the marginal models, etc... Once a model is 
chosen, the estimation of its parameters is carried out by a 
standard method among a large given family, such as the 
maximum likelihood or the weighted least squares. 

 

 

2. MODELS  
2.1. Random effects models 
2.1.1 Introduction 
 In order to explain variability between the various individuals, 
random effects were introduced into the explanatory part of the 
traditional linear model (LM). That gives rise to the mixed linear 
models or random-effects models which are noted by LMM (or by 
L2M). This first family; namely the mixed linear models are 
widely used (Harville 1977; Laird and Ware 1982 ; Chi and 
Reinsel 1989; Verbeke and Molenberghs 2000; Littell et al. 2000; 
Fitzmaurice et al. 2004).These models prove to adapt suitably to 
the longitudinal data and repeated balanced or unbalanced 
measurements, even in the presence of missing data. However, on 
the one hand, they suppose that the data follow normal 
distributions ; on the other hand, the calculative problems pose a 
problem in spite of considerable developments of software and 
procedures, such as PROC MIXED or GENMOD of the SAS 
system (Littell et al. 1996). When one uses the maximum 
likelihood (ML), the obtained normal equations are generally 
nonlinear. Consequently, these equations are solved by iterative 
processes, such as the EM algorithm (Dempster et al.1977; Laird 
et al.1987); the Newton Raphson algorithm (Lindstrom and Bates 
1988); the Fisher scoring algorithm (Jennrich and Schluchter 
1986; etc...). To avoid the slowness of certain algorithms and the 
problems of convergence which is sometimes local rather than 
global; an alternative consists of switching on non iterative 
methods, especially for the variance-covariance matrix estimate of 
the considered model. 
 
2.1.2 Variance-Covariance Structures 
In this section we present several different covariance structures. 
The goal is to choose a parsimonious structure. 
 
2.1.2.1 Simple structure 
This structure suppose that observations on the same subject are 
independent. 
 
2.1.2.2 Compound symmetry structure (C.S) 
In this situation observations on the same subject have 
homogeneous covariance and variances too. 
 
2.1.2.3 AR(1)Structure 
For this structure, the variances are homogeneous and the 
correlation decrease toward zero when the lag increase 
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2.1.2.4 AR(1)RE Structure 
In this situation, we have an autoregressive structure with random 
effect for the subject. 
 
2.1.2.5 Unstructured 
There is no special structure in this case. It is a general case. 
 
2.2. The weighted least squares method 
The weighted least squares method gives unbiased and consistent 
estimates. However, it does not make valid the tests of the 
confidence intervals which are based on normality (data are 
supposed normally distributed). This problem can be solved by 
the use of the nonparametric tests (Zerbe 1979); but these methods 
are applied only for balanced data, which is not often the case for 
longitudinal data or repeated measurements. 
 
2.3. The bootstrap 
The Bootstrap (Efron and Gong 1983); is another method to avoid 
the normality assumption. This method is useful when the 
theoretical distribution of a statistic of interest is complicated or 
unknown, or when the sample size is insufficient for statistical 
inference. The idea is to work with an estimator of a sample 
density. However, there are disadvantages such as heaviness in 
calculations and the missing data can also pose problems. 
 
2.4. Marginal models 
The marginal models consist of solving the generalized estimating 
equations (GEE). This method uses, on the one hand, the 
generalized linear models (GLM) (Mc Cullagh and Nelder 1989) 
and on the other hand, the generalized estimating equations (Liang 
and Zeger 1986), which are an extension of quasi-likelihood (QL) 
(Wedderburn 1974). However, one obtains a rough variance-
covariance matrix estimate of the individuals. In addition, the 
variance is regarded as a nuisance parameter. We are interested 
much more in the regression parameters. In this GEE method, the 
true matrix of correlation is replaced by a matrix whose choice is 
arbitrary, it is a working correlation matrix. This last method, 
which was introduced for the first time by Liang and Zeger 
(1986); is a current controversial problem, as far as its use is 
concerned; because, ignoring the correlation, affects the inference 
of the regression coefficients, on the one hand; and on the other 
hand, the regression coefficients estimates will be inefficient 
(Crowder 1995;2001). Of course, for the selection or comparison 
of models, some criteria, such as the AIC (Akaike Information 
Criterion) and the BIC (Bayes Information Criterion) do exist, 
which we did not mention. We have only outlined a brief 
description of the various models in a general and not a particular 
context (without including particular data). Among these families 
of models, the most used in quantitative genetics; medicine; 
ecology; engineering, as well as in other fields, are the first (the 
random effect models) and the last ( the marginal models). This is 
why we insist on the completed work concerning these models. 
 
3. NOTES AND DISCUSSIONS  
Advantages and disadvantages of the marginal models and 
generalized estimating equations are evoked in several works. 
One can quote those of Zhao and Prentice (1990); Prentice and 
Zhao (1991); Liang et al. (1992); Fitzmaurice and Laird (1993); 
Park (1993); (Crowder 1995); Lindsey and Lambert (1998); 
Crowder (2001); among others. Recall that Liang and Zeger 
(1986) introduced their approach for the analysis of correlated 

data. Their idea was to model the marginal means of the variable 
response and to estimate the regression parameters by the 
resolution of the generalized estimating equations. These 
equations use a working correlation matrix, which depends on a 
parameter α. This matrix is arbitrary and cannot be correctly 
specified. The authors proposed thereafter an estimator of the 
variance regression parameters, known as robust estimator or 
'sandwich estimator' and showed that the regression parameter 
estimates and their variances are convergent even if the working 
correlation matrix is badly specified. Prentice (1988); extended 
this idea in the context of binary responses by introducing 
estimating equations for the correlation parameter noted by α. The 
objective was to jointly estimate the parameters of regression and 
correlation. 
Prentice and Zhao (1991) and Zeger and Liang (1992) generalized 
this method for an unspecified responses. Through examples 
taken for the working correlation matrix and for the true 
correlation matrix, Crowder (1995) showed that the estimator of α 
cannot be consistent (if it does exist at all); this raises a problem 
on the first assumption of theorem 2 of Liang and Zeger (1986). 
Whereby to satisfy this assumption, the situations where the 
estimator of α is K*{1/2} consistent (K is the individual number) 
are sought. Park and Shin (1995) criticized the work of Crowder 
(1995) and contradicted the results author's by simulations. 
However, these simulations were made on small size samples 
(n=25 and n=100). What about large samples then? taking in 
consideration that the work of Crowder (1995) concerned large 
samples which raised controversial over the asymptotic results of 
Liang and Zeger (1986). To solve the problem of disadvantages of 
the generalized estimating equations of Liang and Zeger (1986), 
Crowder (2001) proposed improvements of those equations by 
combining a noted approach GE ('Gaussian Estimation' based on 
the maximum likelihood) with the GEE equations. This method is 
much more based on the GE method. The author concluded that it 
is more advantageous and easier to maximize a function, such as 
the likelihood, and that a maximum almost always exists, even if 
it is local than to solve equations, for example, the GEE equations, 
which sometimes cannot have solutions. Other authors tried to 
make improvements concerning GEE equations. In particular, 
Lipsitz et al. (1991) proposed the odds ratio (OR) per pair such as 
a measure of association within-group instead of the correlation or 
covariance. Liang et al. (1992) like Fitzmaurice and Laird (1993) 
also used the odds ratio. Comparisons between the approach of 
the Maximum likelihood and those of GEE equations were done 
by Park (1993) who went for the first method. Lindsey and 
Lambert (1998) underlined the advantages and especially the 
disadvantages of the marginal models (for example a treatment 
can be efficient on average whereas it is bad for each subject). 
However, the authors underlined that these models can be adapted 
for descriptive studies, such as the epidemiological studies. In 
fact, these models can be only applied with a great precaution in 
the experimental studies, such as the clinical trials. Examples are 
given by authors to compare the marginal models versus the 
conditional ones. Hall and Severini (1998) proposed an extension 
of the GEE in order to improve the effectiveness of estimators of 
the association parameters α. Their method is entitled extended 
generalized estimating equations (EGEE method). Lastly, let us 
note that Hu and Lachin (2001) insisted on the fact that various 
working correlation matrices arrive at various conclusions by 
following a study on the treatment of diabetes. 
 
 



                                  International Journal of Innovative Research in Engineering & Management (IJIREM)  
ISSN: 2350-0557, Volume-2, Issue -5, September 2015 

 

79 
 

4. CONCLUSIONS 
In this paper, we present different models. Our goal is the choice 
of the suitable ones. Based oneself on the results of the literature 
concluded by the various authors and contradicted by others, We 
can say that the choice of the working correlation matrix, let alone 
the choice of the GEE method by using marginal models, is rather 
delicate and that this method remains very debatable; especially, 
with respect to that of the maximum likelihood in the context of 
the random effects models. Therefore we note that the least 
remains the best method and the adequate model too for analysing 
longitudinal data or repeated measures. 
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